Improved incremental prime number sieves

نویسنده

  • Paul Pritchard
چکیده

An algorithm due to Bengalloun that continuously enumerates the primes is adapted to give the rst prime number sieve that is simultaneously sublinear, additive, and smoothly incremental: { it employs only (n= log log n) additions of numbers of size O(n) to enumerate the primes up to n, equalling the performance of the fastest known algorithms for xed n; { the transition from n to n + 1 takes only O(1) additions of numbers of size O(n). (On average, of course, O(1) such additions increase the limit up to which all primes are known from n to n + (log log n)).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two Compact Incremental Prime Sieves

A prime sieve is an algorithm that finds the primes up to a bound n. We say that a prime sieve is incremental, if it can quickly determine if n+1 is prime after having found all primes up to n. We say a sieve is compact if it uses roughly √ n space or less. In this paper we present two new results: • We describe the rolling sieve, a practical, incremental prime sieve that takes O(n log logn) ti...

متن کامل

Trading Time for Space in Prime Number Sieves

A prime number sieve is an algorithm that nds the primes up to a bound n. We present four new prime number sieves. Each of these sieves gives new space complexity bounds for certain ranges of running times. In particular, we give a linear time sieve that uses only O(p n=(log log n) 2) bits of space, an O l (n= log log n) time sieve that uses O(n=((log n) l log log n)) bits of space, where l > 1...

متن کامل

A Space-eecient Fast Prime Number Sieve

We present a new algorithm that nds all primes up to n using at most O(n= log log n) arithmetic operations and O(n=(log n log log n)) space. This algorithm is an improvement of a linear prime number sieve due to Pritchard. Our new algorithm matches the running time of the best previous prime number sieve, but uses less space by a factor of (log n). In addition, we present the results of our imp...

متن کامل

The binary Goldbach problem with one prime of the form p = k 2 + l 2 + 1

We prove that almost all integers n ≡ 0 or 4 (mod 6) can be written in the form n = p1 + p2, where p1 = k 2 + l + 1 with (k, l) = 1. The proof is an application of the half-dimensional and linear sieves with arithmetic information coming from the circle method and the Bombieri-Vinogradov prime number theorem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994